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Introduction

Technical challenges: 

✓ ENERGY SUPPLY to billions of IoT devices

✓ SPECTRUM DEMAND for information transmission

30 online sensor 

nodes (2020)

Total number of 

sensor nodes up to 

200 billion (2020)

28 sensor nodes 

per person (2020)

e.g., smart phones
wearable devices
wireless sensors
consumer devices. 

Internet of Things (IoT) is an emerging paradigm that provides the future
network of interconnected devices



• Extreme low power consumption, i.e., < 100 uW

• Low data rate/ high delay /vulnerability to channel
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• High power consumption, i.e., >10 mW

• High data rate (> 1Mbps), reliability via power control



A.Hybrid Relaying Communications

System Model
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This is an simplified example with just two relays

Complex channel vectors

Beamforming information of HAP



A.Hybrid Relaying Communications

System Model
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Hybrid relays

active relay - - passive relay



A.Hybrid Relaying Communications

System Model
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active relays’ receiving ◼ The beamforming 
information can be received
by both the active relay-1 
and the target receiver
directly

◼ The passive relay-n can 
enhance channel 𝒇𝟎 and 𝒇𝟏
through backscattering

First Hop



A.Hybrid Relaying Communications

System Model
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active relays’ forwarding
◼ The active relay-1 amplifies

and forwards the received 
signal to the receiver

◼ The HAP also beamforms
the same information 
symbol to the receiver

◼ The passive relay-n can 
enhance the forward
channel 𝐠𝟏from the active 
relay-1 to the receiver

Second Hop



A.Hybrid Relaying Communications

System Model

Due to the passive relays’ backscattering, the enhanced 
channels can be represented as follows:

෢𝒇0 and ෢𝒇𝑛 denote the 
equivalent channels from 
the HAP to receiver and to 
the active relay-n



B.Signal Model in Two Hops

System Model
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Received signal at the receiver

Signal

(direct)
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B.Signal Model in Two Hops

System Model
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SNR in the first hop

SNR in the second hop



Optimization Explanation:

Problem Formulation
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Overall throughput

HAP’s beamforming strategies

Transmit power of the n-th active relay

Active relays’ operating parameter

Relays’ radio mode selection

Active relays’ operating parameter

To maximize the overall throughput 𝛾 = 𝛾1 + 𝛾2 in two hops, we aim to 
optimize the HAP’s beamforming strategies (𝒘1, 𝒘2), as well as the 
relays’ radio mode selection 𝑏𝑛 and operating parameters:



The optimization-driven H-DDPG framework for 
hybrid relaying communications

Problem Formulation
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• Combining DQN and DDPG in one hierarchical framework

• Better-informed estimate of target value 𝒚𝒕 with model-based optimization



Problem Formulation

14

𝑠

(𝑠, 𝑎)

(𝑠, 𝑎, 𝑟, 𝑠′)

𝑠′

DQN loss function

Target Q networkCurrent Q networkEnvironment

Playback 

memory unit

gradient of loss 
function

arg max
𝑎

𝑄(𝑠, 𝑎; 𝜃)

𝑄(𝑠, 𝑎; 𝜃) max
𝑎′

𝑄(𝑠′, 𝑎′; 𝜃−)

𝑟

copy parameters 
every N steps 

Deep Q network(DQN) algorithm structure



• We use DQN algorithm to select the relay mode at 

the outer-loop.

Problem Formulation
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Deep Q-network(DQN) algorithm



Problem Formulation

16
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Deep Deterministic Policy Gradient(DDPG) 

algorithm structure



Problem Formulation
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• We use DDPG algorithm to optimize the continuous 

beamforming and relays’ operating parameters

Deep Deterministic Policy Gradient(DDPG) algorithm



Search lower bound:

Problem Formulation
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Numerical Results
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Performance comparison of different algorithms with different value of hyper 

parameter:

• Optimization-driven H-DDPG achieves the highest convergence rate.

• In either case, H-DDPG framework outperforms the conventional DDPG in terms of a 

higher learning rate, due to the reduced action space.

• Optimization-driven H-DDPG is more robust to different values of the hyper parameter 

γ, which is a very significant advantage.



Numerical Results
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Strategy update of the inner-loop DDPG and its dynamics in different DQN 

episodes:
• Each DQN episode spans over 4000 episodes of DDPG strategy updates to ensure the 

convergence of the inner-loop DDPG algorithm.
• Within each part, the inner-loop DDPG algorithm can converge to a stable reward value 

with a fixed radio mode selection, which is generated by the out-loop DQN episode.
• The Optimization-driven H-DDPG has a faster learning rate than the Model-free H-

DDPG in the inner loop.



Numerical Results
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Performance improvement with the increases in the number of relays:

• The convergent reward increases with more relays assisting the information 

transmission.

• The learning rate becomes slightly reduced with more relays, because more relays 

provide additional degree of freedom for the HAP to leverage higher diversity for its 

information transmissions, while at the cost of a lower convergence rate due to 

increased action space.



Conclusions

Optimization-driven Hierarchical Deep Reinforcement Learning for

Hybrid Relaying Communications:

• We proposed a novel optimization-driven hierarchical deep reinforcement

learning approach to solve the throughput maximization problem.

• We integrated Deep Q-network and model-based optimization technique into

the conventional DDPG algorithm in a hierarchical structure.

• We also proposed a model-based optimization to give a guidance for the

target estimation within the learning process, especially in the early stage.

• Simulation results reveal that the proposed algorithm outperforms the

conventional DDPG algorithm in terms of robustness to the hyper parameters

and higher convergence rate.
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Questions & Answers

Thank you !

Contact: gong0012@e.ntu.edu.sg


