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Introduction

Internet of Things (loT) is an emerging paradigm that provides the future
network of interconnected devices

e.g., smart phones
wearable devices
wireless sensors
consumer devices.

Total number of

/ sensor nodes up to
200 billion (2020)

» {2
“"‘.L
30 online sensor ~— ﬁ?m:
nodes (2020) !?;,,g ’ N

per person (2020)

Technical challenges:
v' ENERGY SUPPLY to billions of 10T devices
v SPECTRUM DEMAND for information transmission
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[ Passive Radio/Backscatter Communications U Active Radio/RF Communications

RF energy harvesting RF energy harvesting
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* Extreme low power consumption, i.e., < 100 uW * High power consumption, i.e., >10 mW
* Low data rate/ high delay /vulnerability to channel * High data rate (> 1Mbps), reliability via power control
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A.Hybrid Relaying Communications

This is an simplified example with just two relays

Active RF signals Active relay receiving Active relay forwarding

é Active relay -1

-===r Signal backscattering Active relay -1

e,
; M @ ,@ Receiver
HAP ﬁ d

Passive relay-n 5

v

Complex channel vectors

v

Beamforming information of HAP
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A.Hybrid Relaying Communications
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Hybrid relays
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A.Hybrid Relaying Communications

First Hop
active relays’ receiving B The beamforming
information can be received
é Active relay -1 by both the active relay-1
X; = ,,.,,15 and the target receiver

directly
Zn1

é \ B The passive relay-n can

Recewer
enhance channel f and f,
through backscattering

F‘asswe relay -n

—» Active RF signals =-==F Signal backscattering
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System Model

A.Hybrid Relaying Communications

Second Hop

active relays’ forwarding

Active relay -1
\{.
o |

b
z:n f"
- # ;ﬂ Receiver
HAP é
Passive relay -n

—»  Active RF signals = ===k Signal backscattering

B The active relay-1 amplifies

and forwards the received
signal to the receiver

The HAP also beamforms
the same information
symbol to the receiver

The passive relay-n can
enhance the forward
channel g from the active
relay-1 to the receiver
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A.Hybrid Relaying Communications
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Due to the passive relays’ backscattering, the enhanced
channels can be represented as follows:

l?ﬂ — f['.l + Z bkgkl"kfh
ke

l?n =f, + Z E;-kzknl“;;fk,‘tfn eN.

=

f; and f,: denote the
equivalent channels from
the HAP to receiver and to
the active relay-n

Active relay receiving

é Active relay -1

*y -wIs

é\

Zni

Passwe relay-n

R‘ecewer

Active relay forwarding

Active relay -1

52
2y, L
- ‘g, Receiver
HAP é
Passive relay -n

—  Active RF signals

====p Signal backscattering




System Model

B.Signal Model in Two Hops

Received signal at the relay-n

rn =/ (1 — pn)pefiwis + 0,

Received signal at the receiver

N
rqd = Z §nmnrn + \/ﬁfgfw?.ﬁ + Vg

n=1
Signal Signal
(relay) (direct)

1))
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Relay-n

//)

Receiver
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B.Signal Model in Two Hops

SNR in the first hop

Active relay receiving Active relay forwarding

Active relay -1 Active relay-1
Xy = W,S \
é\\ Recewer é \ RE’CE""EF

Passwe relay-n ' Passive relay -m

Y1 = Pt |fﬁrjr"*""1|2

SNR in the second hop

Zneﬂf LnYnJn + \/Ith[{IWE
1 + ZHEN I"T’’*"'lr-é;h’i#I2

— Active RF signals - ===k Signal backscattering

"2 =
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Problem Formulation

Optimization Explanation:

To maximize the overall throughput y = y; + ¥, in two hops, we aim to
optimize the HAP’s beamforming strategies (w{,w,), as well as the
relays’ radio mode selection b,, and operating parameters:

max 71 + 72

Wi.Wa 'lb'il"t. Pn r'gn

<1 and ||wo|| <1,

Overall throughput

v

HAP’s beamforming strategies

v

s.t. ||wq]
PDn < T}pnpt‘ffwl ‘2, V' n & N,.——> Transmit power of the n-th active relay
pn € (0,1), VneN,,
b, € {0,1}, VneWnN,
6, € [0,27], VYV neN,.

v

Active relays’ operating parameter

v

Relays’ radio mode selection

v

Active relays’ operating parameter
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The optimization-driven H-DDPG framework for
hybrid relaying communications

f Training DQN

State Radio vy

I > | Beamforming

Model-based ; ;
‘g_ DON Maode e e Relaying paral' Target Value E
=4 Optimization Estimation =
o L (Maximize Rate) __— 2
@ i 2
2 Radio. : | 2
= Mode | Policy network | - i Online Q- =
=] = = m
- . (Actar) TD error <7 network =
® State - g
g Radio . - b R 3
| Relaying para. | Training DDPG <

Reward
> MNew transition sample

* Combining DQN and DDPG in one hierarchical framework

* Better-informed estimate of target value y; with model-based optimization

19
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Deep Q network(DQN) algorithm structure

A

DQON loss function

A A

gradient of loss
Q(s,a;0) max Q(s’,a’;67)
a

function
copy parameters
argmax Q(s,a; 6) every N steps

a \ 4

A 4

Environment Current Q network Target Q network

\ 4

R RN
(0

Playback
memory unit

~_

(s,a,1,5")
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Problem Formulation

Deep Q-network(DQN) algorithm

Initialize replay memory D to capacity N

Initialize action-value function Q with random weights 0

Initialize target action-value function Q with weights 0~ = 0

For episode = 1, M do
Initialize sequence s; = {x; } and preprocessed sequence ¢, =¢(s;)
For t=1,T do

With probability ¢ select a random action 4,

otherwise select a, = argmax, Q(¢(s;).a; 0)

Execute action 4, in emulator and observe reward r, and image x; + ,
Set $¢41=5¢,@:,%;+1 and preprocess ¢, | = (s+1)

Store transition (t,‘i)r,a,,r;,drH 1) inD

Sample random minibatch of transitions (tﬁj,aj,rj,tﬁj +1) from D

r if episode terminates at step j+ 1
Sety;= ri+y maxy Q(¢j+1,a’;0_) otherwise

2

Perform a gradient descent step on (yj -0 (tpj,aj; G)) with respect to the
network parameters ()

Every C steps reset Q= Q

End For
End For

We use DQN algorithm to select the relay mode at

the outer-loop.
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Deep Deterministic Policy Gradient(DDPG)
algorithm structure

Critic Network Actor Network

1 1 1
Critic i i Actor i
Optimizer ! ! Optimizer !
A | | 7y |
0 Q gradient I I policy gradient I
update 6 wor 02 ! ! wor t oM update O* !
! gradient | !
: w.r.ta : :
Environment network : T Policy network i #60) [ Random Action
argument: 69 ; ; argument: 69 ! noise
oa=u(s) !
| | |
soft update | | soft update |
YVt / 1 1 ’ 1
A% « g 1 1 OF « gH 1
v | | |
1 1 1
1 1 1
Target-evaluation network | 1 @' = # (i), Target-policy network L St .
o' « ; ' « Environment
argument: 6 | | argument: g# |
1 1 1
1 1 1
L o ol i L e e e e ;____JI T Reward St+1
T T store (S¢, Ag, T, Se41) function
sample data
N * (s, a;,73, Si+1) [ E . Random
Xperience sample strategy
replay

memory
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Deep Deterministic Policy Gradient(DDPG) algorithm

Algorithm 1 DDPG algorithm

Randomly initialize critic network Q(s, a|f) and actor y(s|0") with weights 0% and 6*.
Initialize target network Q' and 1/ with weights 09" « 09, 9#" + g»
Initialize replay buffer R
for episode = 1, M do
Initialize a random process A for action exploration
Receive initial observation state s
fort=1,Tdo
Select action a; = ju(s:|6") + N according to the current policy and exploration noise
Execute action a, and observe reward r, and observe new state s,
Store transition (s, a¢, 7, S¢+1) in B
Sample a random minibatch of N transitions (s;, a;, r;, §;,1) from R
Set y; = 1 +7Q' (si41, ' (5:11]04)|09")
Update critic by minimizing the loss: L = L 3" (y; — Q(si, a:|09))?
Update the actor policy using the sampled policy gradient:

1
Vo &2 F Z VGQ("": "IIHQ)|a¢=s,-,u.=;c(sa)Vﬂﬂfj(“‘lﬂj‘)|S:‘

Update the target networks:
09 « 709 + (1 —7)0%
0" 70" 4 (1 —7)0"

end for
end for

* We use DDPG algorithm to optimize the continuous

beamforming and relays’ operating parameters

17
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Search lower bound:

Proposition 1: Given the radio mode of each relay n € N,
a feasible lower bound on (5) can be found by the convex
reformulation as follows:

max pe||fol]? +pt|f‘[{£wl|2 + P Z 80,1 (8a)

W, W, -0 .
1 12 I"-'-'E.-'"-'a

st. |Fmtn— (1 +n)sn.1 v“ﬁl'qmll =0, Yne N,

V".ﬁﬂn, 1
(8b)

ki < EAWf,, VYneN, (8¢)
Sn1 =W, — f9W . f,, WVneN,, (8d)

where vn 2 npi|ign|?||fo||? is a mnsmm Ar optimum, the
power-splitting ratio is given by p,, = H for n e N.
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Comparison of different algorithms with ~ = 0.7 Comparison of different algorithms with v = 0.1

Performance comparison of different algorithms with different value of hyper
parameter:
e Optimization-driven H-DDPG achieves the highest convergence rate.
* In either case, H-DDPG framework outperforms the conventional DDPG in terms of a
higher learning rate, due to the reduced action space.
* Optimization-driven H-DDPG is more robust to different values of the hyper parameter
Y, which is a very significant advantage.
20
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Inner-DDPG Episode
Reward dynamics in the H-DDPG framework.

Strategy update of the inner-loop DDPG and its dynamics in different DQN
episodes:

* Each DQN episode spans over 4000 episodes of DDPG strategy updates to ensure the
convergence of the inner-loop DDPG algorithm.

e Within each part, the inner-loop DDPG algorithm can converge to a stable reward value
with a fixed radio mode selection, which is generated by the out-loop DQN episode.

* The Optimization-driven H-DDPG has a faster learning rate than the Model-free H-
DDPG in the inner loop. 21
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Performance comparison with different number of relays.

Performance improvement with the increases in the number of relays:

* The convergent reward increases with more relays assisting the information
transmission.

* The learning rate becomes slightly reduced with more relays, because more relays
provide additional degree of freedom for the HAP to leverage higher diversity for its
information transmissions, while at the cost of a lower convergence rate due to

increased action space. -
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Optimization-driven Hierarchical Deep Reinforcement Learning for
Hybrid Relaying Communications:

* We proposed a novel optimization-driven hierarchical deep reinforcement
learning approach to solve the throughput maximization problem.

* We integrated Deep Q-network and model-based optimization technique into
the conventional DDPG algorithm in a hierarchical structure.

* We also proposed a model-based optimization to give a guidance for the
target estimation within the learning process, especially in the early stage.

* Simulation results reveal that the proposed algorithm outperforms the
conventional DDPG algorithm in terms of robustness to the hyper parameters
and higher convergence rate.
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Questions & Answers

Thank you !

Contact: gong0012@e.ntu.edu.sg



